Inequalities between hypergeometric tails

نویسنده

  • Mary C. Phipps
چکیده

A special inequality between the tail probabilities of certain related hypergeometrics was shown by Seneta and Phipps [19] to suggest useful ‘quasi-exact’ alternatives to Fisher’s [5] Exact Test. With this result as motivation, two inequalities of Hájek and Havránek [6] are investigated in this paper and are generalised to produce inequalities in the form required. A parallel inequality in binomial tail probabilities is also established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Martingale Couplings and Bounds on Tails of Probability Distributions

Wassily Hoeffding, in his 1963 paper, introduces a procedure to derive inequalities between distributions. This method relies on finding a martingale coupling between the two random variables. I have developed a construction that establishes such couplings in various urn models. I use this construction to prove the inequality between the hypergeometric and binomial random variables that appears...

متن کامل

Inequalities Associating Hypergeometric Functions with Planer Harmonic Mappings

Though connections between a well established theory of analytic univalent functions and hypergeometric functions have been investigated by several researchers, yet analogous connections between planer harmonic mappings and hypergeometric functions have not been explored. The purpose of this paper is to uncover some of the inequalities associating hypergeometric functions with planer harmonic m...

متن کامل

A Sub-Gaussian Berry-Esseen Theorem For the Hypergeometric Distribution

In this paper, we derive a necessary and sufficient condition on the parameters of the Hypergeometric distribution for weak convergence to a Normal limit. We establish a Berry-Esseen theorem for the Hypergeometric distribution solely under this necessary and sufficient condition. We further derive a nonuniform Berry-Esseen bound where the tails of the difference between the Hypergeometric and t...

متن کامل

Inequalities of extended beta and extended hypergeometric functions

We study the log-convexity of the extended beta functions. As a consequence, we establish Turán-type inequalities. The monotonicity, log-convexity, log-concavity of extended hypergeometric functions are deduced by using the inequalities on extended beta functions. The particular cases of those results also give the Turán-type inequalities for extended confluent and extended Gaussian hypergeomet...

متن کامل

Turán type inequalities for q-hypergeometric functions

In this paper our aim is to deduce some Turán type inequalities for q-hypergeometric and q-confluent hypergeometric functions. In order to obtain the main results we apply the methods developed in the case of classical Kummer and Gauss hypergeometric functions. c ⃝ 2013 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JAMDS

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2003